« Prev | Next »

Page 4.

  • 머신러닝 실전 앙상블 (Ensemble)과 Hyperparameter 튜닝

    머신러닝 알고리즘의 끝판왕인 앙상블(Ensemble) 알고리즘에 대하여 알아보도록 하겠습니다. 앙상블 알고리즘은 방법론 적인 측면에서 Voting, Bagging, Boosting 알고리즘등으로 나뉠 수 있겠고, 앙상블의 앙상블 알고리즘인 Stacking 그리고 Weighted Blending 등의 기법도 알아보도록...


  • 의사결정나무 (Decision Tree)와 Entropy, 그리고 Gini 계수

    Decision Tree는 Random Forest Ensemble 알고리즘의 기본이 되는 알고리즘이며, Tree 기반 알고리즘입니다. 의사결정나무 혹은 결정트리로 불리우는 이 알고리즘은 머신러닝의 학습 결과에 대하여 시각화를 통한 직관적인 이해가 가능하다는 것이 큰 장점입니다....


  • Lasso, Ridge, ElasticNet-L1, L2규제를 적용한 선형 알고리즘

    선형 알고리즘에 기반한 알고리즘에 대해서 알아보고 회귀 (Regression) 문제를 다뤄보도록 하겠습니다. 이번 선형 알고리즘에 기반한 회귀 문제를 다룰 때 L1, L2 규제의 개념이 등장합니다. L1, L2 규제는 딥러닝까지 쭉 이어지는...


  • 최근접 이웃 (KNN) 알고리즘을 활용한 분류

    K-Nearest Neighbors 이른바, 최근접 이웃 분류 알고리즘을 활용한 간단한 머신러닝 분류 문제를 풀어보도록 하겠습니다. 알고리즘은 동작 원리는 매우 직관적이고 단순 합니다. 이해는 어렵지 않으나, 복잡한 분류 문제에 있어서는 모델의 성능에...


  • scikit-learn 데이터 전처리

    데이터 전처리는 데이터 분석 및 머신러닝 학습을 위해서 매우 중요한 단계 입니다. 실무 프로젝트에서는 전체 프로젝트 기간 중 평균 50~70% 이상 시간을 전처리 및 EDA에 투자한다고 합니다. 그만큼 좋은 전처리를...