« Prev | Next »

Page 8.

  • [Keras] 콜백함수 (3) - 조기종료: EarlyStopping

    EarlyStopping 콜백을 활용하면, model의 성능 지표가 설정한 epoch동안 개선되지 않을 때 조기 종료할 수 있습니다. EarlyStopping과 이전에 언급한 ModelCheckpoint 콜백의 조합을 통하여, 개선되지 않는...


  • [Keras] 콜백함수 (2) - weight 중간 저장: ModelCheckpoint

    keras의 콜백함수인 ModelCheckpoint는 모델이 학습하면서 정의한 조건을 만족했을 때 Model의 weight 값을 중간 저장해 줍니다. 학습시간이 꽤 오래걸린다면, 모델이 개선된 validation score를 도출해낼 때마다 weight를 중간 저장함으로써, 혹시...


  • [Keras] 콜백함수 (1) - 학습률(learning rate): ReduceLROnPlateau

    keras의 콜백함수인 ReduceLROnPlateau는 학습률이 개선되지 않을 때, 학습률을 동적으로 조정하여 학습률을 개선하는 효과를 기대할 수 있습니다. 경사하강법에 의하여 학습을 하는 경우 Local Minima에 빠져버리게 되면, 더이상 학습률이 개선되지...


  • train_test_split 모듈을 활용하여 학습과 테스트 세트 분리

    사이킷런(scikit-learn)의 model_selection 패키지 안에 train_test_split 모듈을 활용하여 손쉽게 train set(학습 데이터 셋)과 test set(테스트 셋)을 분리할 수 있습니다. 이번 포스팅에서는 train_test_split 에 대해 자세히 소개해 드리고자...