[Keras] 콜백함수 (2) - weight 중간 저장: ModelCheckpoint
keras의 콜백함수인 ModelCheckpoint
는 모델이 학습하면서 정의한 조건을 만족했을 때 Model의 weight 값을 중간 저장해 줍니다. 학습시간이 꽤 오래걸린다면, 모델이 개선된 validation score를 도출해낼 때마다 weight를 중간 저장함으로써, 혹시 중간에 memory overflow나 crash가 나더라도 다시 weight를 불러와서 학습을 이어나갈 수 있기 때문에, 시간을 save해 줄 수 있습니다.
사용법은 매우 간단합니다.
from keras.callbacks import ModelCheckpoint
filename = 'checkpoint-epoch-{}-batch-{}-trial-001.h5'.format(EPOCH, BATCH_SIZE)
checkpoint = ModelCheckpoint(filename, # file명을 지정합니다
monitor='val_loss', # val_loss 값이 개선되었을때 호출됩니다
verbose=1, # 로그를 출력합니다
save_best_only=True, # 가장 best 값만 저장합니다
mode='auto' # auto는 알아서 best를 찾습니다. min/max
)
model.fit(x_train, y_train,
validation_data=(x_valid, y_valid),
epochs=EPOCH,
batch_size=BATCH_SIZE,
callbacks=[checkpoint], # checkpoint 콜백
)
댓글남기기