🔥알림🔥
① 테디노트 유튜브 -
구경하러 가기!
② LangChain 한국어 튜토리얼
바로가기 👀
③ 랭체인 노트 무료 전자책(wikidocs)
바로가기 🙌
④ RAG 비법노트 LangChain 강의오픈
바로가기 🙌
⑤ 서울대 PyTorch 딥러닝 강의
바로가기 🙌
데이터 분석/인공지능을 공부하려는 분들께 경험을 토대로 학습 방법과 책 추천 (1)
데이터 분석과 인공지능을 공부하려는 분들께 국내 서적을 기준으로 목적에 맞는 책과 공부를 해왔던 경험담에 대하여 공유드리고자 합니다. 데이터 분석 및 인공지능에 관심있는 분들께 도움이 되셨으면 좋겠습니다.
추천에 앞서, 이 글은 어떠한 광고비나 광고의 목적으로 작성된 글이 아니며, 어디까지나 제 경험을 토대로 작성한 개인의견임을 명시합니다. 그리고, 제가 직접 경험한 강의, 스터디, 그리고 읽은 책을 기준으로 공유드립니다.
테디노트 책 출간 소식 전해 드립니다~^^
지난 6개월간 3명의 동료들과 열심히 집필한 책이 드디어 온라인/오프라인 출간 되었습니다!
참고
혼자 데이터분석/머신러닝/딥러닝에 입문하시는 분들은 Machine Learning Study 혼자 해보기 깃헙을 참고해 보세요.
서론 - 나의 시행 착오
저는 인공지능학, 데이터 분석학, 수학 전공자가 아닙니다.
그렇기 때문에 처음에 인공지능/데이터 분석을 공부해보고 싶은데 어디서부터 어떻게 시작해야할지 정말 막연했던 기억이 납니다. 저는 “Python for Data Analysis”라는 책 1권을 사서 보긴 봤는데요, 도무지 이해가 가지 않았습니다. 그렇기 때문에 처음부터 이 책을 사서 보시는 것은 비추천합니다.
주로 온라인, 유튜브 강의와 스터디를 위주로 학습했습니다
Youtube에 공개된 유명한 강의, Udacity, Udemy, Coursera 등등의 강의를 주로 학습했었고, 인프런에서도 유료 강좌를 결제해서 수강하였습니다. 그리고, 온/오프라인 스터디와 커널 스터디 그리고 온라인 과외까지 진행하면서 지속적으로 학습을 했던 것 같습니다. 정말 지난 2년 동안은 거의 새벽까지 독학하면서 삽질도 많이 해보고 캐글과 같은 데이터 분석 대회에 참여하면서 조금씩 조금씩 지식과 경험을 쌓으려고 노력했던 시간이었습니다.
지난 2년 동안의 경험을 토대로 처음 시작하려는 분들께 지름길을 추천 드리고자 합니다
지난 2년 동안 제가 학습한 강의와 책입니다
- 4개의 오프라인 강의 (DsSchool, FastCampus)
- 2회의 원데이 클래스
- 1개의 Udacity Nanodegree
- 13개의 Udemy 강의
- 2개의 Coursera 강의
- 9개의 Inflearn 데이터분석, 인공지능 강의
- 1년 이용권 코드잇 강의
- 4개 X 50강으로 이뤄진 Youtube 플레이리스트 강의
- 100개가 넘는 유튜브 단일 강의
- 3개의 오프라인 데이터 분석 스터디
- 2개의 온라인 스터디
- 1개의 온라인 과외
- 26권의 책
- 캐글 커널 스터디, 블로그 등등…
일단, 잘 몰랐기 때문에 유명한 강의는 닥치는 대로 들어보려고 했습니다. 사실 데이터 분석과 인공지능이라는 매력에 빠져있었고, 지금도 너무 좋아하기 때문에 이렇게 할 수 있었던 것 같습니다.
그런데 저는 항상 스스로 독학만 하다보니 너무나도 많은 시행착오와 금전적, 시간적 낭비를 경험했기에 저처럼 데이터 분석/인공지능 을 공부해보고 싶으신 분들께 저의 직접 경험을 토대로 정리한 학습 순서와 공부법을 추천해 드리고 싶었습니다.
다시 한 번 말씀드리지만, 제 개인적인 경험을 토대로 작성하였으며, 개인마다 느끼시는 차이가 있을 수 있습니다.
Part 1. 기초중의 기초, 기초다지기!! (10시간)
STEP 1: 파이썬 (Python) - 3시간, 무료 (유튜브)
흔히 제일 많이 착각하시는 점 중 하나가 데이터 분석을 잘하려면 = 파이썬을 잘해야지 입니다.
파이썬을 잘 못다루시더라도 데이터 분석을 하시는데에 지장이 없습니다. 처음 접하시는 분들이 파이썬 배우시다가 지쳐서 포기하시는 분들도 있습니다. 전문적인 전통 파이썬 과정 말고 데이터 분석을 위한 파이썬만 콕 찝어 들으시면 됩니다. (절대 끝까지 다 들으실 필요 없어요 ㅠㅠ..시간 되시는 분들은 들으시면 당연히 좋습니다)
아래 리스트 중에서 본인의 취향에 맞는 강좌 1개를 완강해보세요
- 김왼손의 왼손코딩 (유튜브, 무료)
- 혼자 공부하는 파이썬 (유튜브, 무료)
유튜브에 아직 데이터 분석을 위한 압축 파이썬 과정은 찾기가 어려워 제가 개인적으로 강의 촬영을 하여 무료로 공개해볼 까 합니다. 공개한다면 추후 알려드릴 수 있도록 하겠습니다.
STEP 2: 판다스 (Pandas), 시각화 (Matplotlib, Seaborn) - 6~7시간, 무료/유료
판다스라는 라이브러리는 데이터분석을 위해서라면 필수이고, 잘 다루면 다룰수록 무조건 좋습니다. Pandas가 조금 부족하다고 느끼시는 분들은 시간 투자를 하셔서 제대로 배워 두시는 것을 추천 드리며, 엑셀 편집이나 크롤링 등 유용한 기능들을 많이 탑재하고 있으니 매우 유용하게 활용하실 수 있습니다.
판다스는 책으로 학습하시길 추천 드립니다.
파이썬 라이브러리 레시피 는 판다스 관련 책은 아니지만 유용한 파이썬 라이브러리 활용법에 대하여 소개합니다. 데이터 분석과 직접적인 관련은 크게 없을 수 있습니다만, application으로 확장하고 싶으신 분들은 한 번 읽어보시면 좋습니다.
파이썬 머신러닝 판다스 데이터 분석은 굉장히 친절하게 판다스 관련하여 설명하고 있습니다. 위의 유튜브 강의를 보지 않았더라도 이 책의 실습 예제들만 잘 따라해도 판다스는 어느정도 마스터 할 수 있다고 생각합니다.
Python for Data Analysis 는 좀 책이 어렵습니다. 데이터 분석/ 인공지능 관련 도서는 국내 저자분들의 책들이 좀 더 친절하고 이해도 쉽습니다. 이 책은 굉장히 디테일한 내용을 다루고 있기는 합니다만, 입문자에게는 비추입니다. 하지만, 실력을 업그레이드 하고 싶다면 나중에 한 번 보시는 것도 괜찮습니다.
유튜브 오늘코드 채널에서 판다스와 시각화에 대하여 많이 다루고 있습니다. 흥미로운 내용이 있다면, 참고해 보세요. 강사님이 친절하게 가르쳐 주시는 편입니다.
Numpy, Scipy 와 같은 라이브러리는 따로 배우지 마세요!
처음에는 Numpy, Scipy 강의를 따로 찾아서 공부했었는데, 굳이 그럴 필요 없습니다. 추후 머신러닝, 딥러닝을 공부하려는 분들은 자연스럽게 터득하게 되니, 굳이 초반에 따로 공부하실 필요 없습니다.
Part 2. 머신러닝 입문하기 (20시간)
머신러닝 강의 부터는 책으로만 공부하기 어려운 측면이 있습니다. 그렇기 때문에 책과 동영상 강의를 섞어서 듣거나 오프라인 과정을 들으시는 것을 추천 드립니다.
파이썬 머신러닝 완벽 가이드는 정말 추천하는 책입니다. 굉장히 친절한 책이고 예제도 풍부합니다. 게다가 저자분께서 얼마 전에 인터넷 강의도 제작하셨습니다 (유료). 인프런에서 유료 강의 결제 후 책과 함께 들으시는 것을 추천 드립니다.
인프런강의 - 파이썬 머신러닝 완벽 가이드 에서 유료로 동영상 강의도 함께 제공하고 있습니다. 사실 딥러닝 강의는 잘되어 있는 강의들이 많은데, 머신러닝 강의는 유튜브에 잘 되어 있는 공개된 강의는 아직 못 찾았습니다.
아! 물론 있습니다. 전 세계적으로 제일 유명한 강의 중 하나인 Andrew Ng 교수님의 강의입니다.
Machine Learning - Andrew Ng (Stanford University)
단점은 영어, 영어, 영어입니다…
Introduction to Machine Learning with Python 책도 추천 합니다. 우선, 파이썬 머신러닝 완벽 가이드를 마스터 하신 후 보셔도 좋고, 같이 병렬적으로 보셔도 좋습니다. 머신 러닝 교과서 with 파이썬 사이킷런, 텐서플로 책도 꽤 좋은 실습서입니다. Introduction to Machine Learning with Python 책이 좀 어렵게 느끼실 수도 있는데 머신 러닝 교과서 with 파이썬 사이킷런 책은 좀 더 읽기 편하게 쓰여진 책입니다. 완벽 가이드와 같이 보셔도 좋습니다.
추천 순위
- 파이썬 머신러닝 완벽 가이드
- Introduction to Machine Learning with Python
- 머신러닝 교과서 with 파이썬 사이킷런, 텐서플로
댓글남기기