TensorBoard 활용법 및 colab에서 로드하기
TensorBoard 사용을 위한 callback을 만드는 방법과 colab에서 바로 로드하여 확인할 수 있는 magic command에 대한 내용입니다.
TensorBoard 사용을 위한 callback을 만드는 방법과 colab에서 바로 로드하여 확인할 수 있는 magic command에 대한 내용입니다.
TensorFlow Datasets 는 다양한 데이터셋을 TensorFlow에서 활용하기 쉽도록 제공합니다. 굉장히 많고, 다양한 데이터셋이 학습하기 편한 형태로 제공 되기 때문에, 간단한 사용법만 알아두어도, 샘플로 모델을 돌려보고 학습하기에 매우 유용합니다.
TensorFlow 2.0의 ImageDataGenerator를 활용하여 Image 데이터를 로컬 폴더에서 로딩 후 Generator를 통해 Image Augmentation과 모델에 Feed 할 수 있는 Generator를 만들어 보도록 하겠습니다.
tf.data.Dataset을 활용하여 다양한 Dataset 로더를 만들 수 있습니다. 그리고, 로더를 활용하여, shuffle, batch_size, window 데이터셋 생성등 다양한 종류를 데이터 셋을 상황에 맞게 생성하고 모델에 feed할 수 있도록 제공해 줍니다.
seaborn은 matplotlib의 상위 호환 데이터 시각화를 위한 라이브러리입니다. seaborn패키지는 데이터프레임으로 다양한 통계 지표를 낼 수 있는 시각화 차트를 제공하기 때문에 데이터 분석에 활발히 사용되고 있는 라이브러리입니다.
데이터 시각화를 위한 라이브러리인 matplotlib 의 주요 그래프와 세부 옵션들에 대하여 알아보는 튜토리얼입니다.
캐글의 뉴스의 Sarcasm 에 대한 판단을 해주는 딥러닝 모델을 tensorflow 2.0을 활용하여 만들어 보겠습니다.
본 튜토리얼은 matplotlib의 가장 기본적인 튜토리얼을 제공합니다.
This is a very simple tutorial for tensorflow 2.0 beginners! This tutorial is based on Digit Recognizer presented by Kaggle You may be able to submit w...
Google 에서 공식 인증하는 Tensorflow Developers Certification (텐서플로우 2.0 개발자 자격증) 시험에 대한 응시 방법, 취득, 그리고 노하우를 공유드리고자 합니다.